Python语言中的实用数据挖掘
小标 2018-07-16 来源 : 阅读 1071 评论 0

摘要:本文主要向大家介绍了Python语言中的实用数据挖掘,通过具体的内容向大家展示,希望对大家学习Python语言有所帮助。

本文主要向大家介绍了Python语言中的实用数据挖掘,通过具体的内容向大家展示,希望对大家学习Python语言有所帮助。

本次讲座的目的是展示一些关于机器学习的高级概念。该笔记中用具体的代码来做演示,大家可以在自己的电脑上运行(需要安装 IPython,如下所示)。

本次讲座的听众需要了解一些基础的编程(不一定是 Python),并拥有一点基本的数据挖掘背景。本次讲座不是机器学习专家的“高级演讲”。

这些代码实例创建了一个有效的、可执行的原型系统:一个使用“spam”(垃圾信息)或“ham”(非垃圾信息)对英文手机短信(”短信类型“的英文)进行分类的 app。

 

整套代码使用 Python 语言。 python 是一种在管线(pipeline)的所有环节(I/O、数据清洗重整和预处理、模型训练和评估)都好用的通用语言。尽管 python 不是唯一选择,但它灵活、易于开发,性能优越,这得益于它成熟的科学计算生态系统。Python 庞大的、开源生态系统同时避免了任何单一框架或库的限制(以及相关的信息丢失)。

IPython notebook,是 Python 的一个工具,它是一个以 HTML 形式呈现的交互环境,可以通过它立刻看到结果。我们也将重温其它广泛用于数据科学领域的实用工具。

想交互运行下面的例子(选读)?

1. 安装免费的 Anaconda Python 发行版,其中已经包含 Python 本身。

2. 安装“自然语言处理”库——TextBlob:安装包在这。

3. 下载本文的源码(网址://radimrehurek.com/data_science_python/data_science_python.ipynb 并运行:$ ipython notebook data_science_python.ipynb

4. 观看 IPython notebook 基本用法教程 IPython tutorial video 。

5. 运行下面的第一个代码,如果执行过程没有报错,就可以了。

 

端到端的例子:自动过滤垃圾信息

Python

%matplotlib inline

 

import matplotlib.pyplot as plt

import csv

from textblob import TextBlob

import pandas

import sklearn

import cPickle

import numpy as np

from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer

from sklearn.naive_bayes import MultinomialNB

from sklearn.svm import SVC, LinearSVC

from sklearn.metrics import classification_report, f1_score, accuracy_score, confusion_matrix

from sklearn.pipeline import Pipeline

from sklearn.grid_search import GridSearchCV

from sklearn.cross_validation import StratifiedKFold, cross_val_score, train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.learning_curve import learning_curve

   

第一步:加载数据,浏览一下

让我们跳过真正的第一步(完善资料,了解我们要做的是什么,这在实践过程中是非常重要的),直接到 https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection 下载 demo 里需要用的 zip 文件,解压到 data 子目录下。你能看到一个大概 0.5MB 大小,名为 SMSSpamCollection 的文件

我们看到一个 TSV 文件(用制表符 tab 分隔),它的第一列是标记正常信息(ham)或“垃圾文件”(spam)的标签,第二列是信息本身。

这个语料库将作为带标签的训练集。通过使用这些标记了 ham/spam 例子,我们将训练一个自动分辨 ham/spam 的机器学习模型。然后,我们可以用训练好的模型将任意未标记的信息标记为 ham 或 spam。 

第二步:数据预处理

这一节我们将原始信息(字符序列)转换为向量(数字序列);

这里的映射并非一对一的,我们要用词袋模型(bag-of-words)把每个不重复的词用一个数字来表示。

自然语言处理(NLP)的问题:

1. 大写字母是否携带信息?

2. 单词的不同形式(“goes”和“go”)是否携带信息?

3. 叹词和限定词是否携带信息?

换句话说,我们想对文本进行更好的标准化。 

第三步:数据转换为向量

现在,我们将每条消息(词干列表)转换成机器学习模型可以理解的向量。

用词袋模型完成这项工作需要三个步骤:

1.  对每个词在每条信息中出现的次数进行计数(词频);

2. 对计数进行加权,这样经常出现的单词将会获得较低的权重(逆向文件频率);

3. 将向量由原始文本长度归一化到单位长度(L2 范式)。

每个向量的维度等于 SMS 语料库中包含的独立词的数量。

第四步:训练模型,检测垃圾信息

我们使用向量形式的信息来训练 spam/ham 分类器。这部分很简单,有很多实现训练算法的库文件。

有相当多的指标都可以用来评估模型性能,至于哪个最合适是由任务决定的。比如,将“spam”错误预测为“ham”的成本远低于将“ham”错误预测为“spam”的成本。

 

第五步:如何进行实验?

在上述“评价”中,我们犯了个大忌。为了简单的演示,我们使用训练数据进行了准确性评估。永远不要评估你的训练数据。这是错误的。

这样的评估方法不能告诉我们模型的实际预测能力,如果我们记住训练期间的每个例子,训练的准确率将非常接近 100%,但是我们不能用它来分类任何新信息。

一个正确的做法是将数据分为训练集和测试集,在模型拟合和调参时只能使用训练数据,不能以任何方式使用测试数据,通过这个方法确保模型没有“作弊”,最终使用测试数据评价模型可以代表模型真正的预测性能。Naive Bayes 是一个高偏差-低方差的分类器(简单且稳定,不易过度拟合)。与其相反的例子是低偏差-高方差(容易过度拟合)的 k 最临近(kNN)分类器和决策树。Bagging(随机森林)是一种通过训练许多(高方差)模型和求均值来降低方差的方法。

换句话说:

· 高偏差 = 分类器比较固执。它有自己的想法,数据能够改变的空间有限。另一方面,也没有多少过度拟合的空间(左图)。

· 低偏差 = 分类器更听话,但也更神经质。大家都知道,让它做什么就做什么可能造成麻烦(右图)。

随着性能的提升,训练和交叉验证都表现良好,我们发现由于数据量较少,这个模型难以足够复杂/灵活地捕获所有的细微差别。在这种特殊案例中,不管怎样做精度都很高,这个问题看起来不是很明显。

关于这一点,我们有两个选择:

1. 使用更多的训练数据,增加模型的复杂性;

2. 使用更复杂(更低偏差)的模型,从现有数据中获取更多信息。

在过去的几年里,随着收集大规模训练数据越来越容易,机器越来越快。方法 1 变得越来越流行(更简单的算法,更多的数据)。简单的算法(如 Naive Bayes)也有更容易解释的额外优势(相对一些更复杂的黑箱模型,如神经网络)。

了解了如何正确地评估模型,我们现在可以开始研究参数对性能有哪些影响。

第六步:如何调整参数?

到目前为止,我们看到的只是冰山一角,还有许多其它参数需要调整。比如使用什么算法进行训练。

上面我们已经使用了 Navie Bayes,但是 scikit-learn 支持许多分类器:支持向量机、最邻近算法、决策树、Ensamble 方法等…

我们会问:IDF 加权对准确性有什么影响?消耗额外成本进行词形还原(与只用纯文字相比)真的会有效果吗?

第七步:生成预测器

经过基本分析和调优,真正的工作(工程)开始了。

生成预测器的最后一步是再次对整个数据集合进行训练,以充分利用所有可用数据。当然,我们将使用上面交叉验证找到的最好的参数。这与我们开始做的非常相似,但这次深入了解它的行为和稳定性。在不同的训练/测试子集进行评价。

还有一些需要考虑的问题,比如,生产流水线还需要考虑鲁棒性(服务故障转移、冗余、负载平衡)、监测(包括异常自动报警)、HR 可替代性(避免关于工作如何完成的“知识孤岛”、晦涩/锁定的技术、调整结果的黑艺术)。现在,开源世界都可以为所有这些领域提供可行的解决方法,由于 OSI 批准的开源许可证,今天展示的所有工具都可以免费用于商业用途。

其他实用概念

数据稀疏性

在线学习,数据流

用于内存共享的 mmap,系统“冷启动”负载时间

可扩展性、分布式(集群)处理

无监督学习

大多数数据没有结构化。了解这些数据,其中没有自带的标签(不然就成了监督学习!)。

我们如何训练没有标签的内容?这是什么魔法?

分布假设“在类似语境中出现的词倾向于具有相似的含义”。上下文=句子,文档,滑动窗口……

查看 google 关于无监督学习的 word2vec 在线演示。简单的模型、大量数据(Google 新闻,1000 亿词,没有标签)。

本文由职坐标整理并发布,了解更多内容,请关注职坐标编程语言Python频道!

本文由 @小标 发布于职坐标。未经许可,禁止转载。
喜欢 | 0 不喜欢 | 0
看完这篇文章有何感觉?已经有0人表态,0%的人喜欢 快给朋友分享吧~
评论(0)
后参与评论

您输入的评论内容中包含违禁敏感词

我知道了

助您圆梦职场 匹配合适岗位
验证码手机号,获得海同独家IT培训资料
选择就业方向:
人工智能物联网
大数据开发/分析
人工智能Python
Java全栈开发
WEB前端+H5

请输入正确的手机号码

请输入正确的验证码

获取验证码

您今天的短信下发次数太多了,明天再试试吧!

提交

我们会在第一时间安排职业规划师联系您!

您也可以联系我们的职业规划师咨询:

小职老师的微信号:z_zhizuobiao
小职老师的微信号:z_zhizuobiao

版权所有 职坐标-一站式IT培训就业服务领导者 沪ICP备13042190号-4
上海海同信息科技有限公司 Copyright ©2015 www.zhizuobiao.com,All Rights Reserved.
 沪公网安备 31011502005948号    

©2015 www.zhizuobiao.com All Rights Reserved

208小时内训课程